lunes, 30 de noviembre de 2020

Álgebra Parcial 3: Ecuación lineal con dos incógnitas o 2x2

 

Álgebra Parcial 3:  Ecuación Lineal




Link de clases virtuales:

Da click al grupo que te corresponda:

1AM 

1BM 

1CM 

1 DM



Ecuación lineal con dos incognitos o 2x2


Una ecuación lineal con dos incógnitas es una igualdad del tipo ax+by=c, donde a, b, y c son números, y «x» e «y» son las incógnitas.

Una solución es todo par de números que cumple la ecuación.

Los sistemas de ecuaciones lineales los podemos clasificar según su número de soluciones:

  • Compatible determinado: Tiene una única solución, la representación son dos rectas que se cortan en un punto.
  • Compatible indeterminado: Tiene infinitas soluciones, la representación son dos rectas que coinciden.
  • Incompatible: No tiene solución, la representación son dos rectas paralelas.

 Existen diferentes métodos de resolución:

  • Sustitución.
  •  Reducción.
  •  Igualación.

En esta ocasión vamos a resolver un sistema de dos ecuaciones lineales con dos incógnitas. Por ejemplo:

sistema de ecuaciones

Sistema de ecuaciones: método de sustitución

A través del método de sustitución lo que debemos hacer es despejar una de las incógnitas en una de las ecuaciones y sustituir su valor en la siguiente. Lo veremos con más detalle en el siguiente ejemplo:

sistema de ecuaciones

Lo primero que hacemos es despejamos una de las incógnitas en la primera ecuación.

x+y=7
x= 7-y

Posteriormente, sustituimos en la segunda ecuación el valor correspondiente de la «x».

5x-2y=-7
5.(7-y)-2y=-7

Ahora, despejamos la «y».

35-5y-2y=-7
35-7y=-7
-7y=-7-35
-7y=-42
y=-42/-7=6

y=6

Por último, utilizamos el valor de «y» para hallar el valor de «x».

x= 7-y

x=7-6=1

x=1

La solución de nuestro sistema es x=1 e y =6.

Si tienes alguna duda, consulta el siguiente videotutorial:



Sistema de ecuaciones: método de reducción

Con el método de reducción lo que hacemos es combinar, sumando o restando, nuestras ecuaciones para que desaparezca una de nuestras incógnitas.

Los pasos a seguir son los siguientes:

sistema de ecuaciones

En primer lugar, necesitamos preparar las dos ecuaciones, si es necesario, multiplicándolas por los números que convenga.

En este caso, queremos reducir la «y» de nuestro sistema, por tanto, multiplicamos la primera ecuación por 2.

2(x+y=7)
5x-2y=-7

Así, el sistema se queda:

sistema de ecuaciones 1

Si nos fijamos, sumando las ecuaciones la y nos desaparece.

reduccionsistema

Y nos quedaría:

7x=7
x=7/7=1
x=1

Por último, sustituimos el valor que hemos calculado despejando la otra incógnita en una de las ecuaciones iniciales.

y= 7-x

y=7-1=6

y=6

La solución de nuestro sistema es x=1 e y =6.

Si tienes alguna duda, consulta el siguiente videotutorial:

Sistema de ecuaciones: método de igualación

El método de igualación consiste en despejar la misma incógnita en las dos ecuaciones y después igualar los resultados.

Los pasos a seguir son los siguientes:

sistema de ecuaciones

En primer lugar, elegimos la incógnita que deseamos despejar. En este caso, empezaré por la «x» y despejo la misma en ambas ecuaciones.

x+y=7; x=7-y

5x-2y=-7; 5x=2y-7; x=(2y-7)/5

Una vez hemos despejado, igualamos:

7-y=(2y-7)/5
5(7-y=(2y-7)/5)
35-5y=2y-7
42=7y
y=42/7=6

y=6

Por último, sustituimos el valor que hemos calculado despejando la otra incógnita en una de las ecuaciones iniciales.

x=7-y
x=7-6=1

x=1

La solución de nuestro sistema es x=1 e y =6.

Si tienes alguna duda, consulta el siguiente videotutorial:


Actividad No. 2

A continuación darás click en cada uno de siguientes link que te mostrara los temas en video y realizaras en tu cuaderno cada uno de los ejercicios de los siguientes videos.


Ecuación lineal con dos incognitos o 2x2

Videos


N O T A:

1. -El archivo o documento que enviaran tendrá la siguiente nomenclatura: 

Grupo_Actividad#_PrimerApellido_PrimerNombre. 

     Es ejemplo:  1ZM_Actividad1_Ponce_Juan

"NO PONER MIS DATOS, SON LOS DE USTEDES"

    Este archivo debe estar en formato .pdf y fecha limite de entrega Sábado 5/12/2020 11:59 pm.

Enviar tarea en schoology



















No hay comentarios:

Publicar un comentario